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Renewal Sequences and Intermittency
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In this paper we examine the generating function 8(z) of a renewal sequence
arising from the distribution of return times in the ``turbulent'' region for a class
of piecewise affine interval maps introduced by Gaspard and Wang and studied
by several authors. We prove that it admits a meromorphic continuation to the
entire complex z-plane with a branch cut along the ray (1, +�). Moreover, we
compute the asymptotic behavior of the coefficients of its Taylor expansion at
z=0. From this, we obtain the exact polynomial asympotics for the rate of mixing
when the invariant measure is finite and of the scaling rate when it is infinite.

KEY WORDS: Renewal sequence; intermittency; mixing rate; scaling rate;
zeta function.

INTRODUCTION

The Pomeau�Manneville(9) type 1 intermittency model (at the tangent
bifurcation point) consists of a class of smooth transformations
f : [0, 1] � [0, 1] which are expanding everywhere but at a neutral fixed
point at the origin. Such intermittent interval maps provide with no doubt
the simplest examples of ``chaotic'' dynamical systems with anomalous
statistical behaviour. For instance they may possess but a _-finite non-
normalizable invariant measure.(10�12) Or else, they may leave invariant a
probability measure with slow (e.g., polynomial) speed of mixing.(14�16)

Finally, in the framework of thermodynamic formalism, they may exhibit
phase transitions(6�8) and dynamical `-functions with non-polar singu-
larities.(14, 18)

Here we consider a one parameter family of linearized intermittent
interval maps (see Eq. (1.4) below) introduced by Gaspard and Wang.(1, 2)

As far as its statistical properties are concerned, it is equivalent to a
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Markov chain with countable state space.(13) It is also related to the
statistical mechanics model introduced by Fisher(17) and successively
studied by Gallavotti(18) (see also Hofbauer(19)). Without pretending to be
a typical example, the main advantage of this approximation scheme is that
it partially allows for exact calculations.

The main concern of this paper is the study of the generating function
of a renewal sequence arising from the distribution of return times in a
region where the map is uniformly expanding. This function coincides, up
to a factor (1&z)&1, with the Ruelle dynamical `-function, and is shown
to admit a meromorphic continuation to the the entire complex z-plane
with a branch cut along the ray (1, +�). It appears that finding analytic
continuation of dynamically defined functions, which are holomorphic in a
domain given a priori, can be a rewarding mathematical achievement in
itself. Moreover, it will be shown that the main statistical features of this
dynamical system such as the rate of mixing or the scaling rate, are
embodied in the behaviour of its Taylor coefficients.

1. PRELIMINARIES

Let q, r, s be three real parameters satisfying 0<q<1, s>0 and
r+1=q&s. Let moreover dn a 0 be the sequence defined by

d0=1, dn=(1+nr)&1�s, n�1 (1.1)

In particular d1=q. The sequence dn is a Kaluza sequence, i.e., it
satisfies:(20)

0<dn�d0=1, d 2
n�dn&1dn+1 (1.2)

which is equivalent to the assertion that dn+1&2*dn+*2dn&1�0 for all
*>0. The numbers dn 's generate a countable partition A of [0, 1] into the
intervals An=[dn , dn&1], n�1. Let \n :=m(An)=dn&1&dn (here and in
the sequel m denotes the Lebesgue measure). One then readily verifies that
\n<\n&1 and \n�\n&1 is increasing. In addition, one has the asymptotic
behaviour

\n=(r�s)(1+nr)&1&(1�s)+O((1+nr)&2&(1�s)) (1.3)

Setting A0=[0, 1] we define pk=m(Ak)�m(Ak&1), k�1, and consider the
piecewise affine map f : [0, 1] � [0, 1] defined by

f (x)={(x&d1)�p1 ,
dk&1+(x&dk)�pk ,

if x # A1

if x # Ak , k�2
(1.4)
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This map has been introduced as as a simplified model for an intermittent
interval map whose behaviour when x � 0+ is given by

f (x)=x+ux1+s+O(x1+s+=)

where u=r�s and =>0. The fixed point at the origin is neutral: f $(0)=1,
and f $(x) is only Ho� lder continuous at x=0, with exponent s. It may also
be noted that if �0(x) denotes the inverse branch of f which maps [0, 1]
onto [0, q], then we have dn=�n

0(1), and the sequence dn is Kaluza if and
only if �0 is concave. We finally observe that f (An)=An&1 for any n�1,
so that A is a Markov partition for the map f.

1.1. A Countable Markov Chain

One can say more: the iteration process xn= f n(x), with f as above
and x randomly chosen according to Lebesgue measure, is actually
isomorphic (mod 0) to a Markov chain with state space N and transition
matrix P=( pij ) given by

\1 \2 \3 } } }

1 0 0 } } }

P=\ 0 1 0 } } }+ (1.5)

0 0 1 } } }

b b b . . .

To see this, let X be the residual set of points in (0, 1] which are not
preimages of 1 with respect to the map f, namely X=(0, 1]"[dn]n�0 . Let
moreover 0 be the set of all one-sided sequences |=(|0|1 } } } ), |i # N s.t.
given |i then |i&1=|i+1 or |i&1=1. Then the map .: 0 � [0, 1]
defined by

.(|)=x according to f j (x) # A|j
, j�0

is a bijection between 0 and X and conjugates the map f with the shift T
on 0. It is then immediate to check that the stochastic process on 0 given
by xi (|)=|i , i�0, is a Markov chain with conditional probabilities pij=
P(xn(|)= j | xn&1(|)=i)=m( f &1(Aj ) & Ai )�m(Ai ), which coincide with
those in (1.5). Since g.c.d. [n : \n>0]=1 the chain is aperiodic and
recurrent. Consider the infinite sequence t1 , t2 ,... of successive entrance
times in the state 1: t1=inf[i�0 : | i=1] and, for j�2, t j=inf[i>t j&1 :
|i=1]. Let moreover rj=tj+1&t j be the sequence of times between
returns. The state 1 being recurrent, the numbers rj are i.i.d.r.v. under the
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probability P1( } )=P( } | x0(|)=1). Their common distribution is
P1(rj=n)=\n and their expectation value is given by E1(rj )=� n\n=
� dn , which may be finite (positive-recurrent chain) or infinite (null-
recurrent chain) according whether s<1 or s�1. More specifically, we can
define a family of moments

M (l)=E1(rl
j )#: nl\n , l�0 (1.6)

and say that the chain has ergodic degree l if M (l)<� but M (l+1)=�.
Notice that M (0)=1, so that the chain has degree at least zero (null-
recurrent case). Finally, the steady-state equation is ?n=�i # S ?i p in and is
formally solved by ?n=?1 dn&1 , n�1. In the positive-recurrent case one
finds ?1=(� dn)&1. For more details on this Markov chain we refer to
Isola(13).

1.2. Invariant Measure and Return Times

An easy consequence of the previous discussion is that the map f
preserves an absolutely continuous _-finite measure &, whose density e is
given by

e(x)=?n�(\n ?1)=dn&1 �\n , dn<x�dn&1 (1.7)

It may be noted that

&(An)=dn&1= :
l�n

m(Al) (1.8)

More specifically, for E�An we have, using (1.7),

&(E )=
m(E )
m(An)

dn&1 (1.9)

Let {: X � N be the first passage time in the interval A1 , that is

{(x)=1+min[n�0 : f n(x) # A1] (1.10)

so that An is the closure of the set [x # X : {(x)=n]. On the other hand,
the return time function r: X � N in the interval A1 is given by

r(x)=min[n�1 : f n(x) # A1]={ b f (x) (1.11)
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Let Bn=closure of [x # A1 : r(x)=n]. Clearly Bn=A1 & f &1An , and there-
fore, using (1.9), we get

&(Bn)=
m(A1 & f &1An)

m(A1)
=m(An) (1.12)

as one can easily check. Putting togheter (1.8) and (1.12) we have the
following chain of formal identities:

&([0, 1])=: &(An)=: nm(An)=|
1

0
{(x) m(dx)

=:
n

n&(Bn)=|
A1

r(x) &(dx)=M (1) (1.13)

which is a version of Kac's formula. Clearly (1.13) becomes meaningful
under the assumption that all terms involved are finite. Using the short-
hand M#M (1) we then have the following dichotomy: either M<�, and
then there exists an f-invariant a.c. probability measure +=&�M; or M=�
so that & is not normalizable and no invariant a.c. probability measure
exists. In the latter case, the ergodic means (1�n) �n&1

k=0 $f k(x) converge
weakly to the Dirac delta at 0.(21, 11) For later use, we now define recur-
sively a family of formal ``tail sequences'' d (l)

n , with l�0, derived from dn

as follows:

d (0)
n =dn and d (l)

n = :
l>n

d (l&1)
l for l>0 (1.14)

Moreover we say that an and bn are asymptotically equivalent as n
approaches �, denoted as antbn (n � �), if the quotient an �bn tends to
unity. From (1.1) (see also (1.3)) we have that if s<1�l, with l�1, then
the terms d (k)

n are finite for 0�k�l and satisfy

d (k)
n t(1+(n+k) r)k&(1�s) (1.15)

It is also easy to check that M (l) is finite if and only if d (l)
n is. Of special

importance will be the asymptotic behaviour of d (1)
n , when s<1:

d (1)
n&1=&(x # X : {(x)>n)tC n1&(1�s) (1.16)

where C=r1&(1�s).
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2. THE GENERATING FUNCTION OF THE RETURN TIMES
DISTRIBUTION

If we view the element An of the countable Markov partition A intro-
duced in Section 1 as the n th ``state'' for our dynamical system, the number
\n can be interpreted as the m-probability that a first passage in the state
1 occurs after n iterates. Let us now consider the quantity un :=
m( f &(n&1)A1) which, for n�1, gives the m-probability to observe a
passage in the state 1 after n&1 iterates (for the first time or not). We can
write

un= :
n

r=1

\( f l (x) � A1 , 0�l<r&1, f r&1(x) # A1 , f n&1(x) # A1)

= :
n

r=1

\({(x)=r) \( f n&1(x) # A1 | {(x)=r)

= :
n

r=1

\r\( f n&1(x) # A1 | {(x)=r)

On the other hand, according to the discussion given in the previous
section, the iteration process xn= f n(x) ``starts afresh'' at each passage in
the state 1. This implies

\( f n&1(x) # A1 | {(x)=r)=\( f n&1(x) # A1 | f r&1(x) # A1)

=\( f n&r(x) # A1 | x # A1)

=\( f n&r&1(x) # A1)=un&r

and therefore the sequence u0 , u1 ,... satisfies the recurrence relation:

u0=1 and un=\n+u1\n&1+ } } } +un&1\1 for n�1 (2.1)

In other words, u0 , u1 ,... is the renewal sequence(20) associated with the
sequence \1 , \2 ,... . We now show that un is also equal to &(A1 & f &nA1),
and can thus be interpreted as the &-probability to observe a return in the
state 1 after n iterates (recall that &(A1)=1). Indeed, setting u (1)

n :=
&(A1 & f &nA1) and reasoning as above, we see that u (1)

n satisfies the
recurrence relation:

u(1)
0 =1 and u (1)

n =u (1)
0 &(Bn)+ } } } +u (1)

n&1&(B1) for n�1 (2.2)

where Bn is defined after (1.11). On the other hand we know that
&(Bn)=m(An)#\n and, comparing with (2.1), we get u (1)

n #un , \n.
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We now turn to the study of the generating function 8(z) of the
sequence un , which is given by

8(z)= :
�

n=0

unzn=\1& :
�

n=1

\nzn+
&1

=\(1&z) :
�

n=0

dnzn+
&1

(2.3)

The next result can be viewed as a sharpening of a renewal theorem proved
by Erdo� s, Feller and Pollard.(22)

Theorem 2.1 (Part One). The power series defined in (2.3)
defines a holomorphic function 8(z) in the open unit disk and converges
at every point of the unit circle with the exception of z=1, where it has a
non-polar singular point. Moreover, one has the following asymptotic
behaviour of the coefficients un : let C1=sin(?�s)�(?r1&(1�s)) and C2=
C1 �M, then

(a) for s<1 we have vn :=Mun&1tC2n1&(1�s);

(b) for s�1 we have

unt{C1n&1+(1�s),
1� log n,

if s>1
if s=1

Proof. We first notice that

0�
1

��
n=0 dn

=
1

M
<1

It is then easy to see that the function D(z) :=��
n=0 dnzn has no zeros for

|z|�1. Indeed, for |z|<1 this follows from (2.3), since \n>0 and therefore
|��

n=1 \nzn|<1 for |z|<1. Furthermore, from the above identity it follows
that any zeros of D(z) must be of the form ei,, 0<,<2?. Now, if
D(ei,)=0 then (2.3) implies ��

n=1 \nein,=1, that is cos(n,)=1, \n�1,
which is impossible. Then the function 1�D(z) has no singularities in |z|<1
and we can expand it in a power series 1�D(z)=��

n=0 #n zn. Notice that
#0=1. Set hn=&#n (n�1). We can then say more. By the property (1.2)
of the sequence dn we can aplly Hardy, (23) Theorem 22, and obtain

hn�0, :
�

n=1

hn�1

In addition, if M=�, then ��
n=1 hn=1. In particular, it appears that

1���
n=0 dnzn is absolutely convergent for |z|�1. This yields the announced
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analytic properties of 8(z) (the nature of the singularity at z=1 will be
clarified at the end of the proof ).

To show statement (b), it may be noted that un=1&h1& } } } &hn so
that, if M=�, the sequence un decreases monotonically to 0. Assertion (b)
then follows from (1.15) and a repeated application of a Tauberian
theorem for power series (see, e.g., Feller, (24) Chap. XIII.5, Theorem 5).

Next, we are going to prove statement (a), for s<1. In this case, we
have un � 1�M as n � �. To obtain more information we first note that the
relation

:
�

n=0

unzn } :
�

n=0

dn zn= :
�

n=0

zn

implies

:
�

n=0

vn zn } :
�

n=0

dnzn= :
�

n=0

d (1)
n zn (2.4)

where d (1)
n is defined in (1.14) (see also (1.16)) and

vn=Mun&1 (n�0) (2.5)

Moreover we have vn=M �l>n h l , so that the sequence vn is positive and
decreases monotonically to 0.

Put first 1�2�s<1. Then, according to (1.15), the term d (1)
0 is finite

and the power series ��
n=0 d (1)

n zn is divergent at z=1. Thus, for these
values of s, a direct application of (1.15) and the same Tauberian theorem
for power series used above give vntC2 n1&(1�s) and hence (a). Further-
more, using again (1.15), we have that if 1�(l+1)�s<1�l, with l>1,
then for k�l the terms d (k)

0 are finite and the power series ��
n=0 d (l)

n zn is
divergent at z=1. On the other hand, it is easy to check that under these
circumstances (2.4) can be rewritten in the following way:

:
�

n=0

vnzn } :
�

n=0

dn zn

=(z&1)l&1 :
�

n=0

d (l)
n zn+ :

l

k=2

(z&1)k&2 (d (k&1)
0 +d (k)

0 ) (2.6)

so that the claimed result follows using the same reasoning as above, along
with the positivity and monotonicity of the sequences d (l)

n .
It remains to show that z=1 is a non-polar singularity for 8(z). Now,

from (1.15) we have that if s�1, then (1&z) 8(z) � 0 even though
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8(z) � � as z � 1& . Moreover, if 1�(l+1)�s<1�l, then, denoting by
Hl(z) the expression in (2.6), we have, again by (1.15), (z&1)l Hl(z) � 0
but (z&1)l&1 Hl(z) � � as z � 1& . The assertion then follows for each of
these functions, and in particular for 8(z). K

Let us now observe that the coefficients dn can be considered as values
of a function d(x) when x ranges over the natural numbers. One may then
examine the relation between the analytic properties of the function d(x)
determining the coefficients and those of the function defined by D(z)=
�n dn zn (see for instance Dienes, (26) p. 335). Along these lines we now
prove the following theorem.

Theorem 2.1 (Part Two). The function 8(z) can be continued
meromorphically to the entire z-plane with a branch cut along the ray
(1, +�). The meromorphic continuation is given by the formula, valid for
any $>0,

8(z)=
1

(1&z) \
1

2?i |
+�

1
|

Re x=$
d(x)

t&x

t&z
dx dt+

&1

where d(x)=(1+rx)&1�s.

Proof. The following proof relies on standard techniques of analytic
continuation of power series based on the use of the Mellin transform. The
first step in this approach is the construction of a function d(x) defined
on R+ , which reproduces the numbers dn at x=n and extends to a function
regular in the half-plane Re x>0. For our example this construction is
effortless: d(x)=(1+rx)&1�s. Nevertheless we shall sketch below a proce-
dure which may be applied in more general situations, e.g. when the dn 's
are not explicitly known. To this end, we first recall that dn=�n

0(1), where
�0 is the inverse branch of f leaving fixed the origin. Let moreover
�: [0, 1] � [0, q] a suitable smooth function which interpolates �0 at
those points: �(dn)=dn+1 , so that dn=�n(1) as well. Now, a standard
method for dealing with the asymptotic behaviour of iterated functions
starts considering the Abel equation (see, e.g., de Bruijn, (27) p. 160):
G(�(x))=G(x)+1. If G is known, up to an additive constant, and �
satisfies the above equation, one finds �n by solving G(�n(x))=G(x)+n
for �n(x). Suppose one is able to determine a solution G: [q, 1] � [0, 1] of
the Abel equation,2 satisfying G(1)=0 and G(q)=1. Let F(x)=G&1(x):
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[0, 1] � [q, 1]. A candidate for the function d(x) is then obtained by
extending F(x) to R+ as follows:

d(x)=�n(F(x&n)) , n�x�n+1, n�0

It is easy to check that in our case the function

�(x) :=x(1+rxs)&1�s (2.7)

satisfies the above requirement3 and a real analytic solution G: [q, 1] �
[0, 1] of the Abel equation (with � as in (2.7)) which satisfies G(1)=0 and
G(q)=1 is given by G(x)=(x&s&1)�r, and its inverse is F(x)=G&1(x)=
(1+rx)&1�s. Therefore we get �n(x)=F(G(x)+n)=x(1+nrxs)&1�s and
d(x) as announced above. Accordingly, the function d(x) extends to a func-
tion regular in the half-plane Re x>0 and, for any $>0,

d(x) � 0, d $(x)=O(x&1&(1�s)), x � �, Re x�$

uniformly in arg x. We can then proceed as in Evgrafov, (29) Section VII,
Theorem 6.1. First, we take the Mellin transform of d(&x),

d(&x)=|
�

1
w(t) tx dt

t
, w(t)=

1
2?i |

Re x=&$
d(&x) t&x dx

In the first expression we put x=&n and multiply by zn. Taking |z|
smaller than the distance from the origin to the contour (1, �), that is
|z|<1, we sum over n�0 and, as we may interchange the order of summa-
tion and integration, we get

:
�

n=0

dnzn=|
�

1
:
�

n=0

zn

tn+1 w(t) dt=|
�

1

w(t)
t&z

dt

The last integral converges uniformly in any closed region not containing
points of the ray (1, �). We finish the proof by inserting the representation
of w(t) in the above integral. K

Remarks. 1. If one wishes, one can investigate the behaviour of
8(z) in a neighborhood of the branch point z=1 with the help of the
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above formula. For example, taking s=1 one finds that 8(z) has a
logarithmic branch point at z=1.

2. Consider the dynamical zeta function `(z) defined by the following
formal series:(30)

`(z)=exp :
�

n=1

zn

n
Zn , Zn= :

x= f n(x)

`
n&1

k=0

1
| f $( f k(x))|

It is an easy task to realize that Zn=1+tr(PN)n provided N>n, where PN

is the N_N truncation of the transition matrix (1.5) and the 1 comes from
the neutral fixed point. A staightforward algebraic calculation then gives

(1&z)�`(z)= lim
N � �

exp & :
�

n=1

zn

n
tr(PN)n

= lim
N � �

det(I&zPN)

=1& :
�

n=1

\nzn

and therefore

`(z)=(1&z)&1 8(z)

The above identity and Theorem 2.1 (Part two) answer the question raised
by Dalqvist(31) for this particular model (see also Rugh(32) for related
results on Fredholm determinants).

3. SCALING AND MIXING RATES

We now briefly dwell upon some consequences of Theorem 2.1 (Part
one). Given U # L2([0, 1], B, &) one may consider the formal power series
SU (z) given by

SU (z) := :
�

n=0

zn&(U } U b f n)

Take first U=/A1
, the indicator function of the interval A1 . From the pre-

vious section we have that &(/A1
} /A1

b f n)=&(A1 & f &nA1)=un . Therefore

S/A1
(z)=8(z) (3.1)
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3.1. Mixing Rate When the Invariant Measure is Finite

In this subsection we shall assume that s<1 (so that M<�). We can
then consider the generating function of the auto-correlation function of
probability measure +=&�M for the observable /A1

. An easy calculation
using (3.1) shows that

:
�

n=0

zn \+(A1 & f &nA1)&(+(A1))2+=(+(A1))2 } :
�

n=0

vnzn (3.2)

where +(A1)=1�M and the vn 's are defined in statement (a) of Theo-
rem 2.1 (Part one). The asymptotics of vn given there and (3.2) yield at
once

+(A1 & f &nA1)&(+(A1))2
tC2(+(A1))2 n1&(1�s) (3.3)

Next, given k # Z+, k>1, the analogous of relation (2.2) for u (k)
n :=

&(Ak & f &nAk) reads u (k)
n =0 for 0<n<k, and

u (k)
n

&(Ak)
=u0\n+ } } } +un&k\k , n�k (3.4)

Therefore we have

1
&(Ak)

:
�

n=k

zn&(Ak & f &nAk)=8(z) } :
�

n=k

zn\n (3.5)

From this, we obtain the following expression for the generating function
of the correlation function for the indicator function /Ak

:

:
�

n=k

zn \+(Ak & f &nAk)&(+(Ak))2+
=(+(Ak))2 _ 1

+(Ak)
8(z) } :

�

n=k

zn\n& :
�

n=k

zn& (3.6)

The term between square brackets can be decomposed as Sk(z)+Rk(z)
with

Sk(z)=
��

n=k zn\n

&(Ak)
} :

�

n=0

znvn (3.7)
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and

Rk(z)=
��

n=k zn\n

&(Ak)(1&z)
& :

�

n=k

zn=&
1

&(Ak)
:
�

n=k

dnzn (3.8)

We now use the following result, whose proof can be found in Chung, (33)

Chap. I.5, Lemma A.

Lemma 3.1. Let [sn]n�0 be a sequence of nonnegative numbers
not all vanishing. If

lim
n � �

sn

�n
m=0 sm

=0

then, whenever the sequence [tn]n�0 of real numbers has a limit, we have

lim
n � �

�n
m=0 sm tn&m

�n
m=0 sm

= lim
n � �

tn

Using this result with tm=vm and sm=\k+m we see that the coefficient of
zn (with n�k) in Sk(z) is asymptotically equivalent to

\�n&k
m=0 \k+m

&(Ak) + } vn&ktvn (3.9)

where (1.8) has been used and the last asymptotic equivalence holds for
each fixed k # Z+. Putting together (3.6)�(3.9) along with statement (a) of
Theorem 2.1 (Part one) and (1.15) we get,

+(Ak & f &nAk)&(+(Ak))2
tC2(+(Ak))2 n1&(1�s) (3.10)

We now consider an arbitrary Borel subset E�Ak , with m(E )>0. We
have &(E & f &nE )=0 for 0<n<k, and

&(E & f &nE )
&(E )

=u0m( f &(n&k)(E ) & An)+ } } } +un&k m(E ) (3.11)

for n�k, because whenever F�Bl we have &(F )=m(G) with G= f (F )�Al .
Therefore, the generating function of the correlation function for the
indicator function /E is exactly the same as (3.6) provided Ak is replaced
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by E and \n by m( f &(n&k)(E ) & An) (n�k). The same reasoning as above
along with the fact that &(E )=�l�0 m( f &l (E ) & Ak+l) then gives again

+(E & f &nE )&(+(E ))2
tC2(+(E ))2 n1&(1�s) (3.12)

In an entirely analogous way one shows that (3.12) holds true for
E��l # J Al where J/Z+ is any given finite set.

Let B be the Borel _-algebra on [0, 1]. Given E/B, we define the
mixing rate +n(E ) of E as

+n(E ) :=
+(E & f &nE )&(+(E ))2

(+(E ))2 (3.13)

The mixing rate is not uniform in E/B. For instance, (3.10) follows from
(3.6)�(3.8) for each fixed k # Z+, but not uniformly in k. To recover unifor-
mity, we define

B+ :=.
=

[E # B : m(E )>0, E�[0, 1]"(0, =)] (3.14)

An easy consequence of the above discussion is the following result:

Lemma 3.2. Let E, F # B+ . Then +n(E )t+n(F ).

Therefore, one can define the (self-) mixing rate +n( f ) of the map f as
the rate of asymptotic decay of the sequences [+n(E )], with E # B+ . We
summarize the above in the following

Theorem 3.3. If M<� then +n( f )=C2 n1&(1�s).

Remark 1. Let E/B, with 0<m(E )<1, and E c=[0, 1]"E. The
following identity holds plainly

+(E c & f &nE c)
+(E c)

+
+(E c & f &nE )

+(E c)
=1

Moreover, + being f -invariant, we also have

+(E & f &nE )
+(E )

+
+(E c & f &nE )

+(E )
=1
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One may then subtract +(E )++(E c)=1 from these two relations, multiply
the resulting identities by +(E ) and +(E c), respectively, and compare the
results. One obtains

+(E & f &nE )&(+(E ))2=+(E c & f &nE c)&(+(E c))2

Now assume that E/B+ so that E c/% B+ . The above identity, Lemma 3.2
and Theorem 3.3 then imply that

+n(E c)=\ +(E )
+(E c)+

2

C2n1&(1�s), E/B+ , 0<m(E )<1

This can be used, for instance, to evaluate the mixing rate of the set
Dk=�l>k Al , for any k # Z+.

Remark 2. We point out that Theorem 3.3 gives the exact rate of
mixing of the map f, not just a bound for it. In particular they improve all
previously known bounds.(4, 5) The above results can be viewed as statements
about the decay of correlations for test functions as simple as indicators of
sets in B+ . This makes the mixing rate (as defined above) determined by
nothing but the distribution of return times: &[x # X : {(x)>n] (compare
(1.16)). On the other hand, when dealing with correlation functions of a
broader class of observables, one expects a richer behaviour depending also
of the smoothness properties of the functions involved. In particular one
may obtain faster decays. We refer to Isola, (14) Liverani et al. (15) and
Young(16) for different approaches yielding more general results.

3.2. Scaling Rate, Wandering Rate, and Return Sequence
When the Invariant Measure Is Infinite

When M=�, given E/B, with &(E )>0, we can define the scaling
rate _n(E ) of E as

_n(E ) :=
&(E & f &nE )

(&(E ))2 (3.15)

Clearly we have _n(A1)=un . In addition, for any given k # Z+, using (3.5)
and Lemma 3.1 we have,

&(Ak & f &nAk)t&(Ak) } \ :
n&k

m=0

\k+m+ } un&kt(&(Ak))2 } un (3.16)
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More generally, reasoning as in the previous subsection, one shows that
_n(E )tun for all E # B+ . We then define the scaling rate _n( f ) of the map
f as the rate of asymptotic decay of the sequences [_n(E )], E # B+ . By
virtue of statement (b) in Theorem 2.1 (Part one) we obtain

Theorem 3.4. If M=� we have

_n( f )={C1n&1+(1�s),
1� log n,

if s>1
if s=1

From the scaling rate, defined above, one can compute some other natural
objects arising in the ergodic theory of transformations preserving infinite
measures,4 notably the wandering rate wn( f ) and the return sequence rn( f ).
The wandering rate wn(E ) of a Borel set E is defined by wn(E )=
&(�n&1

k=0 f &kE ). The asymptotic equivalence of wandering rates for sets in
B+ has been proved in Thaler, (12) Theorem 3. Thus one defines wn( f ) as
the rate of growth of the sequences [wn(E )], E # B+ . In our case this is
simply given by the partial sums �n

k=0 dk . On the other hand, the existence
of rn( f ) is what makes the transformation f pointwise dual ergodic, (10)

namely such that (1�rn) �n&1
k=0 PkU � e } m(U ) for any U # L1([0, 1], B, &).

Here P is the operator acting on L1([0, 1], B, &) dual to f, that is satisfying
� PU } Vdm=� U } V b f dm. Notice however that this property does not
imply that the partial averages (1�rn) �n&1

k=0 U b f k converge m-almost surely
to the number &(U ). On the contrary, it can be proved(10, 11) that this
cannot hold, not even for one particular sequence of constants rn . Never-
theless, if the sequence rn is (asymptotically equivalent to) the return
sequence, then these partial averages converge in measure to &(U ).(10, 11)

Now, such quantities can be readily obtained putting together Theorem 3.4
and the asymptotic equivalences(10):

wn( f )t
n

�n
k=0 _k

, rn( f )t :
n

k=0

_k (3.17)

4. CONCLUDING REMARKS

We finally point out that using the above and results from Feller(25)

one can obtain several limit theorems, at least for observables such as
indicator functions of sets in B+ . To give an example where Feller results
are directly applicable, consider the test function U=/A1

. Then
Nn(x) :=U(x)+ } } } +U( f n&1(x)) gives the number of passages in the

278 Isola

4 For a general survey on infinite ergodic theory see Aaronson.(34)



state 1 up to the n th iterate of the map f. Let moreover g: X � X be the
induced map defined by g(x)= f {(x)(x). Then Sn(x) :={(x)+{(g(x)) } } } +
{(gn&1(x)) is the total number of iterates of f needed to observe n passages
in the state 1. The relation between un defined in Section 1 and the above
quantities can be obtained as follows: first notice that (Nn=k)=
(Sk�n<Sk+1)=(Sk�n)&(Sk+1�n). Thus m(Nn=k)=m(Sk�n)&
m(Sk+1�n), which is the same as m(Sk�n)=�n

r=k m(Nn=r). Moreover
m(Sk=n)=m(Sk�n)&m(Sk�n&1) for k<n and m(Sn=n)=m(Sn�n).
Therefore we have the following chain of identities

un= :
n

k=1

m(Sk=n)= :
n

k=1

m(Sk�n)& :
n&1

k=1

m(Sk�n&1)

= :
n

k=1

:
n

r=k

m(Nn=r)& :
n&1

k=1

:
n&1

r=k

m(Nn&1=r)=m(Nn)&m(Nn&1)

where m(Nn) denotes the mean of the random variable Nn (set N0=0).
Thus, un may be regarded as the expected number of passages in the state
1 (renewals) per iteration of the map f (after n&1 iterations). The above
identity relates (2.1) with the standard renewal equation(35) for m(Nn).
Take first s<1�2. Then, using the notation of Section 1, we have
_2 :=M (2)&M 2<�. This implies that the associated Markov chain has
ergodic degree at least two. One then shows(25) that the mean and the
variance of Nn are asymptotically equal to n�M and _�M 3�2. Observing that
m(Nn�k)=m(Sk�n), one obtain the following (central) limit theorem:

m \x # X : Nn(x)�
n
M

&
_ - n
M 3�2 :+�

1
2? |

:

&�
e&y2�2 dy

In the case 1�2�s<1, in which the associated Markov chain has ergodic
degree one, as well as in the null recurrent case (s�1), one obtains dif-
ferent, non-normal, limiting distributions, for which we refer to Feller's
paper.
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